Zen(家族17h)是AMD开发的微处理器架构,是Excavator和Puma的后继产品。 Zen是全新设计,从头开始构建,以实现性能和功能的最佳平衡,能够覆盖从无风扇笔记本到高性能台式计算机的整个计算范围。 Zen于2017年3月2日正式发布。Zen在2018年被Zen +取代。
对于性能台式机和移动计算,Zen被标记为Athlon,Ryzen 3,Ryzen 5,Ryzen 7,Ryzen 9和Ryzen Threadripper处理器。 对于服务器,Zen被标记为EPYC。
AMD开发了代号为“Zen”的全新x86处理器核心,与AMD现有的x86处理器核心相比,每个时钟周期的指令集可提高40%。 定制化64位ARM核心—“K12”核心为提高能效设计,适用于服务器和嵌入式工作负载。
主要特点
Zen含义
核心架构
架构设计
Zen架构改进如下:[23][24][25]
- 32KB 一级数据缓存(L1d)(8路)、64KB 一级指令缓存(L1i)(4路),可以直接回写(write-back),降低延时、加大带宽,此前的是先通过指针回写至存储器再更新一级缓存(write through),与Bulldozer模块相比增大两倍带宽
- 同步多线程(SMT),一个CPU核心可执行两个线程。该特性此前在IBM POWER、英特尔(超线程)及甲骨文的SPARC上提供[26]放弃Bulldozer微架构的集群多线程架构(CMT)设计
- 每核心4个算术逻辑单元(ALU)和两个地址生成单元(AGU)/加载存储单元
- 因不再使用Bulldozer模块化设计,浮点运算单元(FPU)不再由两组整数ALU集群共享,改回传统的1颗物理核心1组浮点运算单元(每组4个128bit FPU单元,可组成两个256bit FPU 单元来操作)[27]
- 512KiB 二级缓存(L2)为每个CPU核心独占,与Bulldozer模块相比增大两倍带宽
- 三级缓存(L3)为每4个CPU核心组成的CCX模块(CPU核心复合体,其中的CPU核心仍可单独关闭[28])共享,CCX之间通过Infinity Fabric互联实现缓存一致性,比Bulldozer模块快5倍
- 大型宏操作缓存
- 每个SMT核心每时钟周期能最多分派6个微操作(集成6个整数操作和4个浮点操作)[29][30]
- 更大的撤回、加载、存储队列
- PTE(标签页表条目)接合,可将4KiB的标签页表合并至32KiB的标签页尺寸上
- 智能预取
- 4个解码单元,每个时脉周期可以解码4条x86指令
- 使用带Indirect Target Array的散布型感知器的增强型分支预测,类似于Bobcat微架构的[31],AMD工程师Mike Clark称其可与人工神经网络相比[32];其优势是对于幽灵漏洞的防范能力较佳。
- 分支预测器在指令/资料抓取阶段解除耦合
- 为修改堆栈指针而专用的堆栈引擎(堆栈寄存器),类似英特尔Haswell微架构/Broadwell微架构的设计[33]
- 搬移限制,降低物理资料搬移以降低功耗
- 高性能硬件随机数产生器,支持RDSEED。RDSEED是英特尔在Boardwell微架构上实现的硬件随机数产生器的调取指令[34]
- 支持x86/AMD64、x87、MMX(+)、SSE/SSE2/SSE3/SSSE3/SSE4.1/SSE4.2/SSE4a、AVX/AVX2、FMA3、CVT16/F16C、AES、SHA、ADX等指令集,移除XOP、FMA4、LWP、TBM等甚少使用的指令集支持
- 支持SMAP、SMEP、XSAVEC/XSAVES/XRSTORS、XSAVES、CLFLUSHOPT、CLZERO以及ADCX指令集[34]
- 支持AMD-V、IOMMU虚拟化技术
- 新的时钟门控
- 基于HyperTransport扩展的高带宽低延时的Infinity Fabric互联架构,在基于Zen的处理器上大量使用的NUMA结构之瓶颈可被大幅缓解
- 消费级系统支持双通道DDR4-2666的存储器配置规格,企业级系统最高支持八通道并且带ECC的DDR4存储器,不支持DDR3
- AMD SenseMI,[35][36][37]使用AMD Infinity Control Fabric提供以下功能:
- Pure Power,取代Cool & Quiet,监控芯片电压和时脉,调整处理器的节电状态
- Precision Boost,取代Turbo Core,在热设计功耗和温度的限制下在默认时脉之上进行动态加速,对于有负载分配的核心尽可能加速,其余闲置的CPU核心则尽可能进入休眠状态
- XFR,全称eXtended Frequency Range,动态时脉扩展,在散热条件允许的情况下尽可能将时脉和电压(必要时)提升至超过Precision Boost所能提供的时脉加速幅度,但是这个功能需要主板芯片组提供支持,目前仅搭载X370和X300芯片组的主板可用[38]
- SoC设计,提供传统南桥和北桥芯片的功能(包括PCIe、SATA/AHCI、NVMe、USB),不过AMD还是发表了其委托祥硕设计的300系列芯片组
- Socket AM4插座[35]
- 对GCC、LLVM等编译器做了性能优化
主要特性
平台支持
处理器产品
目前出货的Zen微架构的处理器均为GlobalFoundries在美国纽约州的Fab 8厂制造,制程工艺技术来自GF与三星电子旗下晶圆厂合作的14nm LPP[41]。受制于GF的生产能力,AMD在2017年初以一亿美元的代价修订与GF的合同,不再排除让三星、台积电代工制造的可能,不过这将在未来的7nm制程节点上开始。[42]
Ryzen系列
2017年3月初至4月中,Ryzen 7、Ryzen 5系列处理器正式上市,Ryzen 7为8核心16线程的台式机处理器,Ryzen 5则是有6核心12线程和4核心8线程两种规格,基准时脉从3 GHz ~ 3.6 GHz不等,均支持双通道DDR4存储器,拥有最多24条PCIe通道。
早期Ryzen系列的DDR4存储器支持度有兼容性问题,存储器只能以较低的速率、时序参数运行。不过随着2017年3月、4月的数次AGESA固件的更新,已经大有改善,最高能支持至DDR4-3200规格。[43][44]
AMD也发表了极致性能级别的产品Ryzen ThreadRipper(线程撕裂者),由Epyc的NUMA结构派生而来,目前最高16核心32线程规格(2×8核心),支持四通道存储器(由两个双通道存储器控制器提供支持)。本次也是继AMD Quad FX平台以来第二次面向消费级市场推出NUMA结构的电脑系统平台,不过这次AMD将多颗处理器集成到一块处理器基板上,仅需一个处理器插座。[45]
APU产品线
2017年5月17日AMD公布了移动版Ryzen处理器,均为自家的APU产品。本次公布的CPU规格是,4核心8线程、每核心 512KB 的 L2 Cache、所有CPU核心共享 4MB L3 Cache,基准时脉有 1.9 GHz、2 GHz、3 GHz的配置,最高加速时脉可达 3.3 GHz;而GPU则是采用与代号“Vega”GPU相同的架构,11组CU共704个ALU,核心时脉800MHz左右。[46]
Epyc系列
2017年5月17日AMD在财务分析报告会上宣布,基于Zen微架构的服务器/工作站用CPU,另立Epyc品牌取代原来Opteron品牌。[39]主攻高密度云计算等企业应用。[22]
最高规格是核心代号“Naples”的多芯片模块,由4颗8核心16线程的处理器芯片做在一块处理器PCB上,所以一共拥有4×8个CPU核心,4×16线程,芯片之间采用Infinity Fabric连接。处理器采用Socket SP3 LGA封装,支持双处理器,每颗处理器支持八通道DDR4存储器(由每颗芯片提供双通道支持),每颗处理器拥有高达64条PCIe 3.0通道,处理器之间也使用Infinity Fabric连接。[39]
由于处理器芯片是已经内置SATA/SATA Express控制器、USB控制器、时钟电路等传统上由南桥芯片提供的功能,针对高密度服务器的主板可更利用海量的PCIe通道增加网络处理元器件、RAID数组控制器等而无需南桥芯片,必要的也就一颗显示输出用GPU,也是x86架构平台首次对服务器市场推出高度集成化的半SoC化处理器。[22]不过,也由于处理器本身的多芯片模块设计,相当于一颗NUMA结构的4路处理器平台,需要软件开发做更进一步的针对NUMA结构的优化调适,尤其于工作站用途时,不过市面上并不缺少NUMA的使用示例,Intel在企业级平台上也是大量使用。[45]
性能表现
从多数媒体的首发性能评测而言禅架构比起推土机架构获得了广泛的好评,首发产品Ryzen 7系列的每个CPU核心的性能及多线程性能已经达到Intel Haswell/Boardwell微架构在同时脉下的水准,能源效率则更佳,多线程的需求是Ryzen的优势,其竞争对手的处理器产品采用旧一代的架构时的默认时脉也不会如此高。[47][48]但不足之处是,一来受制于制造工艺,最高时脉及能源效率不如对手英特尔最新的Skylake/Kaby Lake微架构的产品(Intel的14纳米制程,在许多方面表现的都优于其他晶圆厂的14/16nm制程),尽管Skylake/Kaby Lake微架构同时脉下性能与Haswell/Boardwell微架构的相比仅5%的性能差别[49][50];二来是长久以来AMD高性能系统平台的缺席、市占劣势,间接导致不少软件对AMD处理器的性能优化不良,特别是一些电脑游戏(一些游戏性能测试结果显示似乎这些游戏并不适应AMD的同步多线程,出现性能不升反降的情况,以网络游戏为重灾区)[51][52][53]。
目前英特尔主要以制造工艺优势和默认高时脉优势与AMD拉开差距,为维持x86处理器的性能领导地位,英特尔推出了Core i9系列,市场定位相当于以往的Core i7极致版,但规格更为夸张(特别是时脉参数上,尽管耗电和发热量上也有所增长)。针对企业级市场打造的EPYC,则在大数据处理以及高性能运算上乐胜英特尔的Xeon系列,但是在数据库处理方面则不敌对手。[54]
Ryzen并没有熔毁漏洞、幽灵漏洞的问题也比较轻微,竞争对手Intel修正这些漏洞所造成的性能损失,让Ryzen在许多需求的竞争力提高。
有第三方x86-64指令集程序优化指导机构Anger,推出了针对Zen微架构处理器的源码优化建议指导。[55]
Zen+
产品化 | 2018年4月 |
---|---|
设计团队 | AMD |
生产商 |
|
核心数量 |
|
一级缓存 | 每核心 32 KiB 资料 + 64 KiB 指令 |
二级缓存 | 每核心 512 KiB |
三级缓存 | 每个CCX 8 MiB |
CPU插座 |
|
应用平台 | 台式机、工作站等 |
核心代号 |
|
使用的处理器型号 |
|
|
Zen+是Zen的改进型微架构,[58]首款基于Zen+的处理器于2018年4月发表。[59]
改进之处
Zen+微架构的处理器使用了GlobalFoundries的“12纳米”LP(Leading Performance)工艺制作,[60]该制程工艺实际上是同厂14纳米LPP工艺的改良版,重在提高单位面积下晶体管的数量(即同等电路下减少芯片面积),而Zen+相较于Zen而言没有大变动,晶体管数量也是几乎一样。[61]有第三方媒体对基于Zen+的Ryzen 7进行实测,发现除了芯片面积有所减少以外,相较于第一代也有小幅的时脉提升及同等性能下功耗的下降,[62][61]但这个也与AMD对Zen的电源管理有改善有关,主要是对AMD SenseMI电源管理的调整改善,令CPU电源管理模块更快响应CPU的负荷需要,并且在有负荷时CPU核心的时脉比此前Zen的更能维持高时脉,特别是XFR2,还进一步改进了检测单个CPU核心在当前最高工作温度下的最高时脉的特性。[63]
除了换用更新的制程以及对CPU电源管理的改善外,还有:[64]
- 降低对缓存、存储器访问时所需的时钟周期
- 提升缓存带宽
- 更佳的存储器兼容性以及更高性能参数的存储器支持(原生支持DDR4-2933,XMP/AMP支持下更达DDR4-3400+)
这些改进使得Zen+相较于Zen而言同时脉下每时钟周期能处理多3%的指令数量,最高时脉也有6%的提升,最终大约获取10%左右的性能提升。[61]
配套的芯片组更新至400系列,不过原先300系列的通过AGESA EFI固件更新后(若厂商提供)也可以使用基于Zen+的处理器。
Zen 2
首批采用Zen 2微架构的CPU产品于2019年7月发表,Zen 2显著改善了性能。
相关
Zen 关键技术
详细解读AMD Zen新架构
精确功耗控制
精准智能超频
扩展频率范围
神经网络预测
智能预取
All Zen Chips[edit]
List of all Zen-based Processors | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Processor | Features | ||||||||||||||||||||||||
Model | Price | Process | Launched | Family | Core | C | T | L3$ | L2$ | L1$ | Freq | Turbo | TDP | Max Mem | SMT | AMD-V | XFR | SEV | SME | TSME | |||||
Uniprocessors | |||||||||||||||||||||||||
200GE | $ 55.00 | 14 nm | 6 September 2018 | Athlon | Raven Ridge | 2 | 4 | 4 MiB | 1 MiB | 192 KiB | 3.2 GHz | 35 W | 64 GiB | ✔ | ✔ | ✘ | ✘ | ✘ | ✘ | ||||||
220GE | $ 65.00 | 14 nm | 21 December 2018 | Athlon | Raven Ridge | 2 | 4 | 4 MiB | 1 MiB | 192 KiB | 3.4 GHz | 35 W | 64 GiB | ✔ | ✔ | ✘ | ✘ | ✘ | ✘ | ||||||
240GE | $ 75.00 | 14 nm | 21 December 2018 | Athlon | Raven Ridge | 2 | 4 | 4 MiB | 1 MiB | 192 KiB | 3.5 GHz | 35 W | 64 GiB | ✔ | ✔ | ✘ | ✘ | ✘ | ✘ | ||||||
300U | 14 nm | 6 January 2019 | Athlon | Picasso | 2 | 4 | 4 MiB | 1 MiB | 192 KiB | 2.4 GHz | 15 W | 64 GiB | ✔ | ✔ | ✘ | ✘ | ✘ | ✘ | |||||||
3150U | 14 nm | 6 January 2020 | Athlon Gold | Dali | 2 | 4 | 4 MiB | 1 MiB | 192 KiB | 2.4 GHz | 15 W | 32 GiB | ✔ | ✔ | ✘ | ✘ | ✘ | ✘ | |||||||
PRO 200GE | 14 nm | 6 September 2018 | Athlon | Raven Ridge | 2 | 4 | 4 MiB | 1 MiB | 192 KiB | 3.2 GHz | 35 W | 64 GiB | ✔ | ✔ | ✘ | ✘ | ✘ | ✔ | |||||||
3050U | 14 nm | 6 January 2020 | Athlon Silver | Dali | 2 | 2 | 4 MiB | 1 MiB | 192 KiB | 2.3 GHz | 15 W | 32 GiB | ✔ | ✔ | ✘ | ✘ | ✘ | ✘ | |||||||
7351P | $ 750.00 | 14 nm | 20 June 2017 | EPYC | Naples | 16 | 32 | 64 MiB | 8 MiB | 1,536 KiB | 2.4 GHz | 2.9 GHz | 155 W, 170 W | 2,048 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✔ | |||||
7401P | $ 1,075.00 | 14 nm | 20 June 2017 | EPYC | Naples | 24 | 48 | 64 MiB | 12 MiB | 2,304 KiB | 2 GHz | 3 GHz | 155 W, 170 W | 2,048 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✔ | |||||
7551P | $ 2,100.00 | 14 nm | 20 June 2017 | EPYC | Naples | 32 | 64 | 64 MiB | 16 MiB | 3,072 KiB | 2 GHz | 3 GHz | 180 W | 2,048 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✔ | |||||
3101 | 14 nm | 21 February 2018 | EPYC Embedded | Snowy Owl | 4 | 4 | 8 MiB | 2 MiB | 384 KiB | 2.1 GHz | 2.9 GHz | 35 W | 512 GiB | ✘ | ✔ | ✘ | ✔ | ✔ | ✔ | ||||||
3151 | 14 nm | 21 February 2018 | EPYC Embedded | Snowy Owl | 4 | 8 | 16 MiB | 2 MiB | 384 KiB | 2.7 GHz | 2.9 GHz | 45 W | 512 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✔ | ||||||
3201 | 14 nm | 21 February 2018 | EPYC Embedded | Snowy Owl | 8 | 8 | 16 MiB | 4 MiB | 768 KiB | 1.5 GHz | 3.1 GHz | 30 W | 512 GiB | ✘ | ✔ | ✘ | ✔ | ✔ | ✔ | ||||||
3251 | $ 315.00 | 14 nm | 21 February 2018 | EPYC Embedded | Snowy Owl | 8 | 16 | 16 MiB | 4 MiB | 768 KiB | 2.5 GHz | 3.1 GHz | 55 W | 512 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✔ | |||||
3255 | 14 nm | EPYC Embedded | Snowy Owl | 8 | 16 | 16 MiB | 4 MiB | 768 KiB | 2.5 GHz | 55 W | 512 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✔ | ||||||||
3301 | $ 450.00 | 14 nm | 21 February 2018 | EPYC Embedded | Snowy Owl | 12 | 12 | 32 MiB | 6 MiB | 1,152 KiB | 2 GHz | 3 GHz | 65 W | 1,024 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✔ | |||||
3351 | 14 nm | 21 February 2018 | EPYC Embedded | Snowy Owl | 12 | 24 | 32 MiB | 6 MiB | 1,152 KiB | 1.9 GHz | 3 GHz | 80 W | 1,024 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✔ | ||||||
3401 | 14 nm | 21 February 2018 | EPYC Embedded | Snowy Owl | 16 | 16 | 32 MiB | 8 MiB | 1,536 KiB | 1.85 GHz | 3 GHz | 85 W | 1,024 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✔ | ||||||
3451 | $ 880.00 | 14 nm | 21 February 2018 | EPYC Embedded | Snowy Owl | 16 | 32 | 32 MiB | 8 MiB | 1,536 KiB | 2.15 GHz | 3 GHz | 100 W | 1,024 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✔ | |||||
FireFlight | 3 August 2018 | 4 | 8 | 4 MiB | 2 MiB | 384 KiB | 3 GHz | 8 GiB | ✔ | ✔ | ✔ | ✘ | ✘ | ✘ | |||||||||||
1200 | $ 109.00 | 14 nm | 27 July 2017 | Ryzen 3 | Summit Ridge | 4 | 4 | 8 MiB | 2 MiB | 384 KiB | 3.1 GHz | 3.4 GHz | 65 W | 64 GiB | ✘ | ✔ | ✘ | ✘ | ✘ | ✘ | |||||
1300X | $ 129.00 | 14 nm | 27 July 2017 | Ryzen 3 | Summit Ridge | 4 | 4 | 8 MiB | 2 MiB | 384 KiB | 3.5 GHz | 3.7 GHz | 65 W | 64 GiB | ✔ | ✔ | ✔ | ✘ | ✘ | ✘ | |||||
2200G | $ 99.00 | 14 nm | 12 February 2018 | Ryzen 3 | Raven Ridge | 4 | 4 | 4 MiB | 2 MiB | 384 KiB | 3.5 GHz | 3.7 GHz | 65 W | 64 GiB | ✘ | ✔ | ✔ | ✘ | ✘ | ✘ | |||||
2200GE | 14 nm | 19 April 2018 | Ryzen 3 | Raven Ridge | 4 | 4 | 4 MiB | 2 MiB | 384 KiB | 3.2 GHz | 3.6 GHz | 35 W | 64 GiB | ✘ | ✔ | ✔ | ✘ | ✘ | ✘ | ||||||
2200U | 14 nm | 8 January 2018 | Ryzen 3 | Raven Ridge | 2 | 4 | 4 MiB | 1 MiB | 192 KiB | 2.5 GHz | 3.4 GHz | 15 W | 32 GiB | ✔ | ✔ | ✘ | ✘ | ✘ | ✘ | ||||||
2300U | 14 nm | 8 January 2018 | Ryzen 3 | Raven Ridge | 4 | 4 | 4 MiB | 2 MiB | 384 KiB | 2 GHz | 3.4 GHz | 15 W | 32 GiB | ✘ | ✔ | ✘ | ✘ | ✘ | ✘ | ||||||
3250U | 14 nm | 6 January 2020 | Ryzen 3 | Dali | 2 | 4 | 4 MiB | 1 MiB | 192 KiB | 2.6 GHz | 15 W | 32 GiB | ✔ | ✔ | ✘ | ✘ | ✘ | ✘ | |||||||
PRO 1200 | 14 nm | Ryzen 3 | Summit Ridge | 4 | 4 | 8 MiB | 2 MiB | 384 KiB | 3.1 GHz | 3.4 GHz | 65 W | 64 GiB | ✔ | ✔ | ✘ | ✘ | ✘ | ✔ | |||||||
PRO 1300 | 14 nm | Ryzen 3 | Summit Ridge | 4 | 4 | 8 MiB | 2 MiB | 384 KiB | 3.5 GHz | 3.7 GHz | 65 W | 64 GiB | ✔ | ✔ | ✘ | ✘ | ✘ | ✔ | |||||||
PRO 2200G | 14 nm | 10 May 2018 | Ryzen 3 | Raven Ridge | 4 | 4 | 4 MiB | 2 MiB | 384 KiB | 3.5 GHz | 3.7 GHz | 65 W | 64 GiB | ✘ | ✔ | ✘ | ✘ | ✘ | ✔ | ||||||
PRO 2200GE | 14 nm | 10 May 2018 | Ryzen 3 | Raven Ridge | 4 | 4 | 4 MiB | 2 MiB | 384 KiB | 3.2 GHz | 3.6 GHz | 35 W | 64 GiB | ✘ | ✔ | ✔ | ✘ | ✘ | ✔ | ||||||
PRO 2300U | 14 nm | 8 January 2018 | Ryzen 3 | Raven Ridge | 4 | 4 | 4 MiB | 2 MiB | 384 KiB | 2 GHz | 3.4 GHz | 15 W | 32 GiB | ✘ | ✔ | ✘ | ✘ | ✘ | ✔ | ||||||
1400 | $ 169.00 | 14 nm | 11 April 2017 | Ryzen 5 | Summit Ridge | 4 | 8 | 8 MiB | 2 MiB | 384 KiB | 3.2 GHz | 3.4 GHz | 65 W | 64 GiB | ✔ | ✔ | ✘ | ✘ | ✘ | ✘ | |||||
1500X | $ 189.00 | 14 nm | 11 April 2017 | Ryzen 5 | Summit Ridge | 4 | 8 | 16 MiB | 2 MiB | 384 KiB | 3.5 GHz | 3.7 GHz | 65 W | 64 GiB | ✔ | ✔ | ✔ | ✘ | ✘ | ✘ | |||||
1600 | $ 219.00 | 14 nm | 11 April 2017 | Ryzen 5 | Summit Ridge | 6 | 12 | 16 MiB | 3 MiB | 576 KiB | 3.2 GHz | 3.6 GHz | 65 W | 64 GiB | ✔ | ✔ | ✘ | ✘ | ✘ | ✘ | |||||
1600X | $ 249.00 | 14 nm | 11 April 2017 | Ryzen 5 | Summit Ridge | 6 | 12 | 16 MiB | 3 MiB | 576 KiB | 3.6 GHz | 4 GHz | 95 W | 64 GiB | ✔ | ✔ | ✔ | ✘ | ✘ | ✘ | |||||
2400G | $ 169.00 | 14 nm | 12 February 2018 | Ryzen 5 | Raven Ridge | 4 | 8 | 4 MiB | 2 MiB | 386 KiB | 3.6 GHz | 3.9 GHz | 65 W | 64 GiB | ✔ | ✔ | ✘ | ✘ | ✘ | ✘ | |||||
2400GE | 14 nm | 19 April 2018 | Ryzen 5 | Raven Ridge | 4 | 8 | 4 MiB | 2 MiB | 384 KiB | 3.2 GHz | 3.8 GHz | 35 W | 64 GiB | ✔ | ✔ | ✘ | ✘ | ✘ | ✘ | ||||||
2500U | 14 nm | 26 October 2017 | Ryzen 5 | Raven Ridge | 4 | 8 | 4 MiB | 2 MiB | 384 KiB | 2 GHz | 3.6 GHz | 15 W | 32 GiB | ✔ | ✔ | ✘ | ✘ | ✘ | ✘ | ||||||
2600H | 14 nm | 10 September 2018 | Ryzen 5 | Raven Ridge | 4 | 8 | 4 MiB | 2 MiB | 384 KiB | 3.2 GHz | 3.6 GHz | 45 W | 32 GiB | ✔ | ✔ | ✘ | ✘ | ✘ | ✘ | ||||||
PRO 1500 | 14 nm | 29 June 2017 | Ryzen 5 | Summit Ridge | 4 | 8 | 16 MiB | 2 MiB | 384 KiB | 3.5 GHz | 3.7 GHz | 65 W | 64 GiB | ✔ | ✔ | ✘ | ✘ | ✘ | ✔ | ||||||
PRO 1600 | 14 nm | Ryzen 5 | Summit Ridge | 6 | 12 | 16 MiB | 3 MiB | 576 KiB | 3.2 GHz | 3.6 GHz | 65 W | 64 GiB | ✔ | ✔ | ✘ | ✘ | ✘ | ✔ | |||||||
PRO 2400G | $ 169.00 | 14 nm | 10 May 2018 | Ryzen 5 | Raven Ridge | 4 | 8 | 4 MiB | 2 MiB | 384 KiB | 3.6 GHz | 3.9 GHz | 65 W | 64 GiB | ✔ | ✔ | ✘ | ✘ | ✘ | ✔ | |||||
PRO 2400GE | 14 nm | 10 May 2018 | Ryzen 5 | Raven Ridge | 4 | 8 | 4 MiB | 2 MiB | 384 KiB | 3.2 GHz | 3.8 GHz | 35 W | 64 GiB | ✔ | ✔ | ✘ | ✘ | ✘ | ✔ | ||||||
PRO 2500U | 14 nm | 8 January 2018 | Ryzen 5 | Raven Ridge | 4 | 8 | 4 MiB | 2 MiB | 384 KiB | 2 GHz | 3.6 GHz | 15 W | 32 GiB | ✔ | ✔ | ✘ | ✘ | ✘ | ✔ | ||||||
1700 | $ 329.00 | 14 nm | 2 March 2017 | Ryzen 7 | Summit Ridge | 8 | 16 | 16 MiB | 4 MiB | 768 KiB | 3 GHz | 3.7 GHz | 65 W | 64 GiB | ✔ | ✔ | ✘ | ✘ | ✘ | ✘ | |||||
1700X | $ 399.00 | 14 nm | 2 March 2017 | Ryzen 7 | Summit Ridge | 8 | 16 | 16 MiB | 4 MiB | 768 KiB | 3.4 GHz | 3.8 GHz | 95 W | 64 GiB | ✔ | ✔ | ✔ | ✘ | ✘ | ✘ | |||||
1800X | $ 499.00 | 14 nm | 2 March 2017 | Ryzen 7 | Summit Ridge | 8 | 16 | 16 MiB | 4 MiB | 768 KiB | 3.6 GHz | 4 GHz | 95 W | 64 GiB | ✔ | ✔ | ✔ | ✘ | ✘ | ✘ | |||||
2700U | 14 nm | 26 October 2017 | Ryzen 7 | Raven Ridge | 4 | 8 | 4 MiB | 2 MiB | 384 KiB | 2.2 GHz | 3.8 GHz | 15 W | 32 GiB | ✔ | ✔ | ✔ | ✘ | ✘ | ✘ | ||||||
2800H | 14 nm | 10 September 2018 | Ryzen 7 | Raven Ridge | 4 | 8 | 4 MiB | 2 MiB | 384 KiB | 3.3 GHz | 3.8 GHz | 45 W | 32 GiB | ✔ | ✔ | ✘ | ✘ | ✘ | ✘ | ||||||
PRO 1700 | 14 nm | Ryzen 7 | Summit Ridge | 8 | 16 | 16 MiB | 4 MiB | 768 KiB | 3 GHz | 3.7 GHz | 65 W | 64 GiB | ✔ | ✔ | ✘ | ✘ | ✘ | ✔ | |||||||
PRO 1700X | 14 nm | Ryzen 7 | Summit Ridge | 8 | 16 | 16 MiB | 4 MiB | 768 KiB | 3.4 GHz | 3.8 GHz | 95 W | 64 GiB | ✔ | ✔ | ✔ | ✘ | ✘ | ✔ | |||||||
PRO 2700U | 14 nm | 8 January 2018 | Ryzen 7 | Raven Ridge | 4 | 8 | 4 MiB | 2 MiB | 384 KiB | 2.2 GHz | 3.8 GHz | 15 W | 32 GiB | ✔ | ✔ | ✔ | ✘ | ✘ | ✔ | ||||||
R1102G | 14 nm | 25 February 2020 | Ryzen Embedded | 2 | 2 | 4 MiB | 1 MiB | 192 KiB | 1.2 GHz | 2.6 GHz | 6 W | 32 GiB | ✘ | ✔ | ✘ | ✘ | ✔ | ✘ | |||||||
R1305G | 14 nm | 25 February 2020 | Ryzen Embedded | 2 | 4 | 4 MiB | 1 MiB | 192 KiB | 1.5 GHz | 2.8 GHz | 8 W | 32 GiB | ✔ | ✔ | ✘ | ✘ | ✔ | ✘ | |||||||
R1505G | $ 80.00 | 14 nm | 16 April 2019 | Ryzen Embedded | Banded Kestrel | 2 | 4 | 4 MiB | 1 MiB | 192 KiB | 2.4 GHz | 3.3 GHz | 15 W | 32 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✘ | |||||
R1606G | 14 nm | 16 April 2019 | Ryzen Embedded | Banded Kestrel | 2 | 4 | 4 MiB | 1 MiB | 192 KiB | 2.6 GHz | 3.5 GHz | 15 W | 32 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✘ | ||||||
V1202B | 14 nm | 21 February 2018 | Ryzen Embedded | Great Horned Owl | 2 | 4 | 4 MiB | 1 MiB | 192 KiB | 2.3 GHz | 3.2 GHz | 15 W | 32 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✘ | ||||||
V1404I | 14 nm | December 2018 | Ryzen Embedded | Great Horned Owl | 4 | 8 | 4 MiB | 2 MiB | 384 KiB | 2 GHz | 3.6 GHz | 15 W | 32 GiB | ✔ | ✔ | ✘ | ✘ | ✔ | ✘ | ||||||
V1500B | 14 nm | December 2018 | Ryzen Embedded | 4 | 8 | 4 MiB | 2 MiB | 384 KiB | 2.2 GHz | 16 W | 32 GiB | ✔ | ✔ | ✘ | ✘ | ✔ | ✘ | ||||||||
V1605B | 14 nm | 21 February 2018 | Ryzen Embedded | Great Horned Owl | 4 | 8 | 4 MiB | 2 MiB | 384 KiB | 2 GHz | 3.6 GHz | 15 W | 32 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✘ | ||||||
V1756B | 14 nm | 21 February 2018 | Ryzen Embedded | Great Horned Owl | 4 | 8 | 4 MiB | 2 MiB | 384 KiB | 3.25 GHz | 3.6 GHz | 45 W | 32 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✘ | ||||||
V1780B | 14 nm | December 2018 | Ryzen Embedded | 4 | 8 | 4 MiB | 2 MiB | 384 KiB | 3.35 GHz | 3.6 GHz | 45 W | 32 GiB | ✔ | ✔ | ✘ | ✘ | ✔ | ✘ | |||||||
V1807B | 14 nm | 21 February 2018 | Ryzen Embedded | Great Horned Owl | 4 | 8 | 4 MiB | 2 MiB | 384 KiB | 3.35 GHz | 3.8 GHz | 45 W | 32 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✘ | ||||||
1900X | $ 549.00 | 14 nm | 31 August 2017 | Ryzen Threadripper | Whitehaven | 8 | 16 | 16 MiB | 4 MiB | 768 KiB | 3.8 GHz | 4 GHz | 180 W | 2,048 GiB | ✔ | ✔ | ✔ | ✘ | ✘ | ✘ | |||||
1920X | $ 799.00 | 14 nm | 10 August 2017 | Ryzen Threadripper | Whitehaven | 12 | 24 | 32 MiB | 6 MiB | 1,152 KiB | 3.5 GHz | 4 GHz | 180 W | 2,048 GiB | ✔ | ✔ | ✔ | ✘ | ✘ | ✘ | |||||
1950X | $ 999.00 | 14 nm | 10 August 2017 | Ryzen Threadripper | Whitehaven | 16 | 32 | 32 MiB | 8 MiB | 1,536 KiB | 3.4 GHz | 4 GHz | 180 W | 2,048 GiB | ✔ | ✔ | ✔ | ✘ | ✘ | ✘ | |||||
Multiprocessors (dual-socket) | |||||||||||||||||||||||||
7251 | $ 574.00 | 14 nm | 20 June 2017 | EPYC | Naples | 8 | 16 | 32 MiB | 4 MiB | 768 KiB | 2.1 GHz | 2.9 GHz | 120 W | 2,048 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✔ | |||||
7261 | 14 nm | 14 June 2018 | EPYC | Naples | 8 | 16 | 64 MiB | 4 MiB | 768 KiB | 2.5 GHz | 2.9 GHz | 155 W, 170 W | 2,048 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✔ | ||||||
7281 | $ 650.00 | 14 nm | 20 June 2017 | EPYC | Naples | 16 | 32 | 32 MiB | 8 MiB | 1,536 KiB | 2.1 GHz | 2.7 GHz | 155 W, 170 W | 2,048 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✔ | |||||
7301 | $ 825.00 | 14 nm | 20 June 2017 | EPYC | Naples | 16 | 32 | 64 MiB | 8 MiB | 1,536 KiB | 2.2 GHz | 2.7 GHz | 155 W, 170 W | 2,048 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✔ | |||||
7351 | $ 1,100.00 | 14 nm | 20 June 2017 | EPYC | Naples | 16 | 32 | 64 MiB | 8 MiB | 1,536 KiB | 2.4 GHz | 2.9 GHz | 155 W, 170 W | 2,048 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✔ | |||||
7371 | $ 1,550.00 | 14 nm | 2019 | EPYC | Naples | 16 | 32 | 64 MiB | 8 MiB | 1,536 KiB | 3.1 GHz | 3.8 GHz | 200 W | 2,048 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✔ | |||||
7401 | $ 1,850.00 | 14 nm | 20 June 2017 | EPYC | Naples | 24 | 48 | 64 MiB | 12 MiB | 2,304 KiB | 2 GHz | 3 GHz | 155 W, 170 W | 2,048 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✔ | |||||
7451 | $ 2,400.00 | 14 nm | 20 June 2017 | EPYC | Naples | 24 | 48 | 64 MiB | 12 MiB | 2,304 KiB | 2.3 GHz | 3.2 GHz | 180 W | 2,048 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✔ | |||||
7501 | $ 3,400.00 | 14 nm | 20 June 2017 | EPYC | Naples | 32 | 64 | 64 MiB | 16 MiB | 3,072 KiB | 2 GHz | 3 GHz | 155 W, 170 W | 2,048 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✔ | |||||
7551 | $ 3,400.00 | 14 nm | 20 June 2017 | EPYC | Naples | 32 | 64 | 64 MiB | 16 MiB | 3,072 KiB | 2 GHz | 3 GHz | 180 W | 2,048 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✔ | |||||
7601 | $ 4,200.00 | 14 nm | 20 June 2017 | EPYC | Naples | 32 | 64 | 64 MiB | 16 MiB | 3,072 KiB | 2.2 GHz | 3.2 GHz | 180 W | 2,048 GiB | ✔ | ✔ | ✘ | ✔ | ✔ | ✔ | |||||
Count: 78 |
参考文献
- ^ 跳转至:1.0 1.1 锐龙 AMD Ryzen7 台式处理器今日起全球上市!性能超越想象!. AMD. 2 March 2017 [4 March 2017]. (原始内容存档于2017-06-09).
- ^ 100%的Ryzen CPU由GloFo FAB 8生产. bitsandchips. [2018-04-14]. (原始内容存档于2018-04-14).
- ^ GlobalFoundries announces 14nm validation with AMD Zen silicon. ExtremeTech. [2016-11-19]. (原始内容存档于2016-12-07).
- ^ 跳转至:4.0 4.1 Anthony, Sebastian. AMD says Zen CPU will outperform Intel Broadwell-E, delays release to 2017. Ars Technica. 18 August 2016 [18 August 2016]. (原始内容存档于2016-11-21).
- ^ Details of AMD Zen 16-core x86 APU emerge. [2016-11-19]. (原始内容存档于2016-05-02).
- ^ AMD Zen-based 8-core Desktop CPU Arrives in 2016, on Socket FM3. TechPowerUp. [2016-11-19]. (原始内容存档于2016-03-02).
- ^ Ryan Smith. AMD’s 2016-2017 x86 Roadmap: Zen Is In, Skybridge Is Out. AnandTech. 6 May 2015 [2016-11-19]. (原始内容存档于2015-05-08).
- ^ 跳转至:8.0 8.1 即将到来的HEDT&服务器之战. 编译整理自twitter@CanardPC/Benchlife. [2018-04-14]. (原始内容存档于2018-04-14).
- ^ 跳转至:9.0 9.1 Kampman, Jeff. AMD gives us our first real moment of Zen. Tech Report. 18 August 2016 [18 August 2016]. (原始内容存档于2016-11-18).
- ^ Bo Moore. AMD’s next-gen Zen CPU due in 2016. pcgamer. [2016-11-19]. (原始内容存档于2016-10-30).
- ^ AMD hints at high-performance Zen x86 architecture. bit-tech. 11 September 2014 [15 December 2014]. (原始内容存档于2015-04-02).
- ^ Mujtaba, Hassan. AMD Announces 2014-2016 Roadmap – 20nm Project SkyBridge and K12 64-bit ARM Cores For 2016. WCCF Tech. May 5, 2014 [January 15, 2015]. (原始内容存档于2015-03-10).
- ^ AMD Ryzen – the Zen architecture release date, specs, price and rumours. PCGamesN. 2017-02-14 [2017-02-20]. (原始内容存档于2017-02-11) (英语).
- ^ AMD 開啟重返榮耀之旅,正式推出 Ryzen 處理器暨平台. techbang.com. [2017-03-27]. (原始内容存档于2017-03-27).
- ^ 中國海光 CPU 將在下一代採用 7nm 製程,預計可能於年底流片.
- ^ Brad Chacos. AMD Zen-based CPUs and APUs will unify around Socket AM4. PCWorld. 8 January 2016 [2017-03-27]. (原始内容存档于2017-02-02).
- ^ How AMD’s powerful Zen chip flouts the SoC stereotype. PCWorld. [2017-03-08]. (原始内容存档于2017-02-06) (英语).
- ^ Cutress, Ian. Early AMD Zen Server CPU and Motherboard Details. Anandtech. 18 August 2016 [22 March 2017]. (原始内容存档于2017-03-22).
- ^ AMD’s Zen Processor Might Power Next-Generation Apple MacBook Pro – Custom SOC Design With HBM2 Memory System. wccftech.com. [2017-03-30]. (原始内容存档于2017-03-30).
- ^ 郑双艳. AMD Zen架构处理器明年问世 性能媲美Skylake. 腾讯数字. 2015-02-23 [2015-02-24]. (原始内容存档于2015-02-23) (中文(中国大陆)).
另外,在封装接口方面,Zen架构将会实现与现有ARM处理器的接口兼容和互换。AMD在去年发布ARM架构处理器时就宣称将与以后的处理器实现接口的兼容,看来AMD是早有准备。而如果这一技术能够实现,那么对于企业级用户来说,这将是一个巨大的进步,对ARM阵营也将是一个强心剂。
- ^ 14nm AMD Zen CPU Will Have DDR4 and Simultaneous Multithreading. Softpedia. 28 January 2015 [31 January2015]. (原始内容存档于2015-03-10).
- ^ 跳转至:22.0 22.1 22.2 【x86 興衰史】為何 AMD 在 x86 CPU 被 Intel 壓著打整整 10 年?戰況會改觀嗎?. TechNews 科技新报.[2017-08-25]. (原始内容存档于2017-08-25).
- ^ Weekend tech reading: AMD ‘Zen’ and their return to high-end CPUs, tracking Windows pirates – TechSpot. techspot.com. [2015-05-12]. (原始内容存档于2015-05-11).
- ^ AMD: Zen chips headed to desktops, servers in 2016 – The Tech Report – Page 1. techreport.com. [2015-05-12]. (原始内容存档于2015-05-09).
- ^ Anton Shilov. AMD: ‘Bulldozer’ was not a game-changer, but next-gen ‘Zen’ will be. KitGuru. 11 September 2014 [1 February 2015]. (原始内容存档于2016-06-04).
- ^ AMD Zen Confirmed for 2016, Features 40% IPC Improvement Over Excavator. [2017-03-27]. (原始内容存档于2016-03-04).
- ^ Clark, Mike. A New x86 Core Architecture for the Next Generation of Computing (PDF). AMD: 7. [2017-03-27]. (原始内容存档 (PDF)于2016-11-26).
- ^ 【Anandtech】AMD Ryzen 5 1600X / 1500X测试:与同价位i5的线程之战. [2018-04-14]. (原始内容存档于2018-04-14).
- ^ Mujtaba, Hassan. AMD Opens The Lid on Zen Architectural Details at Hot Chips – Huge Performance Leap Over Excavator, Massive Throughput on 14nm FinFET Design. WCCFtech. [23 August 2016]. (原始内容存档于2016-08-25).
- ^ Walrath, Josh. PC Perspective. PC Perspective. [13 March 2017]. (原始内容存档于2017-10-12) (英语).
- ^ Jiménez, Daniel. Strided Sampling Hashed Perceptron Predictor (PDF). Texas A&M University. (原始内容存档 (PDF)于2016-09-19).
- ^ Williams, Chris. ‘Neural network’ spotted deep inside Samsung’s Galaxy S7 silicon brain. The Register. (原始内容存档于2017-02-24).
- ^ Fog, Agner. The microarchitecture of Intel, AMD and VIA CPUs (PDF). Technical University of Denmark. (原始内容存档 (PDF)于2017-03-28).
- ^ 跳转至:34.0 34.1 AMD Starts Linux Enablement On Next-Gen “Zen” Architecture. Phoronix. 17 March 2015 [17 March 2015]. (原始内容存档于2017-03-08).
- ^ 跳转至:35.0 35.1 Cutress, Ian. The AMD Zen and Ryzen 7 Review…. anandtech.com. 2017-03-02 [2017-03-16]. (原始内容存档于2020-03-18).
- ^ Walton, Mark. AMD Ryzen 7 1800X still behind Intel, but it’s great for the price. arstechnica.com. 2017-03-02[2017-03-03]. (原始内容存档于2020-02-03).
- ^ Alcorn, Paul. AMD Ryzen 7 1800X CPU Review. tomshardware.com. 2017-03-02 [2017-03-03].
- ^ Verry, Tim. PSA: AMD XFR Enabled On All Ryzen CPUs, X SKUs Have Wider Range. PC Perspective. 2017-03-04[2017-03-04]. (原始内容存档于2019-03-31).
- ^ 跳转至:39.0 39.1 39.2 AMD发布32核64线程的EPYC处理器,内部是4路Ryzen CPU?. [2017-05-17]. (原始内容存档于2017-05-19).
- ^ 8核只是Zen核心的开始,AMD Naples 32核服务器级CPU Q2降临. expreview.com. [2017-03-27]. (原始内容存档于2017-03-27).
- ^ Samsung and GLOBALFOUNDRIES Forge Strategic Collaboration to Deliver Multi-Sourced Offering of 14nm FinFET Semiconductor Technology _ GLOBALFOUNDRIES. [2017-04-28]. (原始内容存档于2017-10-24).
- ^ AMD改代工合約 台積受惠大. 中时电子报. [2017-10-24]. (原始内容存档于2017-10-25) (中文(台湾)).
- ^ AMD Ryzen 7 1800X review: what’s the real story with gaming?. [2017-05-17]. (原始内容存档于2017-04-09).
- ^ AMD 逐步解開限制,Ryzen 記憶體運作時脈不再卡卡. [2017-05-17]. (原始内容存档于2017-05-14).
- ^ 跳转至:45.0 45.1 T客邦 – 我只推薦好東西. [2017-08-25]. (原始内容存档于2017-08-25) (中文(台湾)).
- ^ Ryzen APU用Vega核显,性能提升巨大,今年年底才发布. [2017-05-17]. (原始内容存档于2017-05-19).
- ^ 這是值得你期待的裝機新選擇,AMD Ryzen 7 1800X 處理器實測. techbang.com. [2017-03-27]. (原始内容存档于2017-03-27).
- ^ 锐龙 AMD Ryzen 7 1800X首发评测:Intel这下真的要慌了. expreview.com. [2017-03-27]. (原始内容存档于2017-03-27).
- ^ 戏说厂商之Intel:什么时候变成了牙膏厂. pconline.com.cn. [2017-04-08]. (原始内容存档于2017-04-03).
- ^ Intel真的在挤牙膏?历代Core i7处理器性能大比拼. expreview.com. [2017-04-08]. (原始内容存档于2017-04-03).
- ^ 【AMD AMA &Anandtech】Ryzen游戏性能问题解答. [2018-04-14]. (原始内容存档于2018-04-14).
- ^ Ryzen游戏性能不行?AMD称Intel平台优化太多所致,承诺改善. expreview.com. [2017-03-27]. (原始内容存档于2017-03-27).
- ^ AMD 正積極改善 Ryzen 問題,合適購買時間點或許不遠了. techbang.com. [2017-03-27]. (原始内容存档于2017-03-27).
- ^ De Gelas, Johan; Cutress, Ian. Sizing Up the Servers: Intel’s Skylake-SP Xeon vs AMD’s EPYC 7000. Anandtech. 11 July 2017 [11 July 2017]. (原始内容存档于2017-08-26).
- ^ Agner:AMD Ryzen 架构及指令输出、延迟测试结果. [2017-05-23]. (原始内容存档于2017-05-17).,原载于Test results for AMD Ryzen (页面存档备份,存于互联网档案馆)
- ^ 跳转至:56.0 56.1 Cutress, Ian. AMD Reveals Threadripper 2. Anandtech. 5 June 2018 [6 June 2018]. (原始内容存档于2018-06-12).
- ^ Alcorn, Paul. AMD Announces 2nd Generation Ryzen 7 & 5 CPUs: Pricing, Pre-Orders. Tom’s Hardware. 13 April 2018[13 April 2018].
- ^ Cutress, Ian. AMD Tech Day at CES. Anandtech. 8 January 2018 [8 January 2018]. (原始内容存档于2018-06-12).
- ^ Bright, Peter. AMD’s 2018 roadmap: Desktop APUs in February, second-generation Ryzen in April. Ars Technica. 8 January 2018 [9 January 2018]. (原始内容存档于2020-02-03).
- ^ AMD Will Use ‘New’ GlobalFoundries 12nm Node for Future CPUs, GPUs. ExtremeTech. 2017-09-22 [2018-02-04]. (原始内容存档于2018-02-05) (美国英语).
- ^ 跳转至:61.0 61.1 61.2 Cutress, Ian. The AMD 2nd Gen Ryzen Deep Dive. Anandtech. 19 April 2018 [30 April 2018]. (原始内容存档于2018-06-12).
- ^ Kampman, Jeff. AMD lays out its Ryzen and Radeon plans for 2018 and beyond at CES. Tech Report. 8 January 2018[8 January 2018]. (原始内容存档于2018-06-13).
- ^ Leather, Anthony. AMD Confirms New Zen+ Ryzen CPUs For April 2018: X470 Chipset, Threadripper And APUs Inbound Too. Forbes. 7 January 2018 [9 January 2018]. (原始内容存档于2018-06-12).
- ^ Mah Ung, Gordon. AMD reveals Ryzen 2, Threadripper 2, 7nm Navi, and more in CES blockbuster. PC World. 7 January 2018 [9 January 2018]. (原始内容存档于2018-01-13).
更多详情请看: